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PROGRAMMING PROJECT 2

Introduction

In this project, we will be implementing a molecular dynamic (MD) simulation of Argon atoms in two
dimensions. As these are generally stable atoms by nature, we will only consider Van der Waals
interactions within this system. As discussed in class, for a MD simulation, the evolution of the system is
given by Newton’s force equation which is as follows:
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To integrate this problem, we will be using Verlet’s algorithm. Before describing Verlet’s algorithm, we
will be introducing the Van der Waal'’s interactions in a system of Argon atoms and reduced units. First,
we have that the energy of two atoms at a distance of ; ; of such a system is given by
A B

E(rij) = 4e(A)2 ~ (£)9)
where in this case, we have A = B = ¢. ¢ and € determine the scale of this problem, where ¢ denotes the
Van der Waals radius and e denotes the magnitude of the energy and KLB = 120K. In reduced units, we
have o = € = 1. r; ; is the absolute value of the distance vector between two atoms i and j. In order to solve
Newton’s equation, we need to compute te derivative of the Energy equation with respect to the
derivative. Therefore, we find the derivative, in reduced units to take the form

fij :24((%)) - (%,7]_))

Implemention of boundary conditions

Next we must set boundary conditions to avoid unwanted boundary effects on the dynamics of the
system. We begin with a square region of the plane with dimensions [0,2Lc] X [0,2Lc] and identify the
top, bottom, left and right edges. We want the following to happen at our boundaries

o The distance between any two atoms will have to be computed across the domain and across the
edges we identified, i.e top, bottom, etc.

o The trajectory of any particle moving beyond the boundaries will continue across the identified edges.

Figure 1 below gives the reader a visual regarding the criteria above for boundary conditions.
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Figure 1: This is a visualization of our boundary conditions. It is supposed to act like a torus, and by
following the arrows, the reader will be able to see what happens to an atom as it travels across one of the
identified edges. The black arrow indicates which atom to focus on, and the dashed arrow shows where it
appears after the boundary conditions are applied.

Initialization of our system

We then begin with the initialization of the system. For N atoms, we have a size L system with edges from
0to 2 x L. We will be fixing a time step, 6t, and setting our initial positions to be within this system at least
o apart, which we set to be equal to 1, and initial velocities to be 1, which are then displaced. To use
Verlet’s algorithm, it is also required to to assign positions at t = -1 where

x_1 = xo(i) — vx0(i)0t

See Figure 2 on for more on specifically how we decided to intialize our variables.



inputs
15; % number of atoms
1

%
N
L 0; % size of system

%sdeclare vectors

v = zeros(N,2); % velocity vector
p = zeros(N,2); % position at n
pl = zeros(N,2); % position at n-1
pn = zeros(N,2); % position at n+l
=
£

zeros(N, 2); % distance vector
zeros(N, 2); % force vector

% Initialization of acceleration vectors

ax = zeros(N,2); % for x component
ay = zeros(N,2); % for y component
sx = zeros(N,2); % dummy variable meant for sum of x component
sy = zeros(N,2); % dummy variable meant for sum of y component

%% initialization of position

% choose N random integers into a N,1 vector
xp = randi([1 2%L], N, 1);

yp = randi([1 2%L], N, 1);

% With sigma = 1, we have deltar = sigma/4
deltar = 0.25;

% displace intial random integers
% addition to position vector

% 1:N are the x components

% N+1:2xN are the y components

p(1:N) = 2.%(xp-0.5).%deltar;
p(N+1:N%2) = 2.%(yp-0.5).%deltar;

%% initialization of velocity
vl = 1; % same as 'Computational Physics, Giordano'

% displacement of velocities and randomized for each atom
v(1:N) = abs(2.x(p(1:N)-0.5).%v@);
V(N+1:N%2) = abs(2.x(p(N+1:2«N)-0.5).%v0);

% initialization of time variables

dt = .02; % change in time, time step
time = 100; % end time

tmax = time/dt; % simulation time

% Initialization of positions at time = n-1

% Required for verlet's algorithm

pl(1:N) = abs(p(1:N)-(v(1:N)=*dt));

p1(N+1:N*2) = abs(p(N+1:N*2)—(v(N+1:N*2)*dt));

Figure 2: This is taken from our Matlab script, dynamic.m which shows how we initialized our variables
and displaced them before we used them in Verlet’s algorithm, which is shown in figure 7.

Implementation of Verlet’s algorithm

For the Verlet’s algorithm, we need to update x and y components separately. The following equations
compute the new position, new velocity, and acceleration for each component. For simplicity sake, we will
only be writing the equations for the x component.

The new position of x is given by

xi(n4+1) & 2x5(m) — :(n — 1) + 2y (n) (AR
The new x component of velocity is given by
xi(n+1)—x;(n—1)

vix(n) = y;

The acceleration a;, is given by

iy Yizj fij cos (i)



where the value of the force is given in the introduction and we can calculate cos 6;; = %, with A

representing the separation between atoms i, j along the x coordinate. We calculate this before updating
the position and velocity values. To reduce the computational time, we also assumed that atoms with a
distance greater than 3¢ will not interact with each other and that the forces | f;;| and |f(ji)| are equal. See
Figure 6 on the last page for implementation.

Data collection and results We are asked to calculate an average of measurable quantities along the
trajectory of a particle and across particles. By subdividing the time intervals, we can take averages of our
results for each time interval across atoms.

We can estimate the termperature T t which the system is running. One approach we can use to estimate T
is by using the equipartition theorem that tells us

KT = % ((v% +vy)

where (, ) represents the mean taken over the trajectories and particles. We found the mass of each Argon
atom to be 9.96 x 10~2° kg and the Boltzmann constant to be 1.38~23. The following figures represent our
results
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Figure 3: These graphs show the average temperature change over time for our program (right), dynam-
ics.m, as well the program that was used in “Computational Physics” by Giordano and Nakanishi (left).
Although the magnitude for our values were different, the behavior is very similar. Possibilities concern-
ing the large values will be discussed below in Issues and Possible Remedies. We see the temperature
grow exponentially between t = 1 and t = 2 and continues to fluctuate between a certain range. From our
simulation, we found this range to be 7 x 10* and 8 x 10%.
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Figure 4: Here, we used the same temperature equation and observe how the behavior changes as we
change the length. On the left is when we have the length to be 5, and on the right we have the length of
20. The main difference between these two graphs, would be the range of fluctuation after t = 3. For the
smaller length, we see more erratic behavior, while the larger length shows a similar behavior to Figure 3.
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Figure 5: Here, we changed the amount of atoms from N = 15 to N = 5 (on the left) and N=25 (on the right).
We see very different behaviors for both of these cases. For the N = 5, the behavior does not seem stable
and fluctuates very much. For N = 25, we do see an initial growth exponentially, but the fluctuation ranges
seems to be larger compared to the other graphs above.

Issues and possible remedies
There were a couple issues that we faced during the implementation of this simulation. (1) We had issues
with the randomization of initial points and their displacement. In some cases, our initial positions would
be found to be NaN. Although this did not happen frequently, this was an issue that we tried our best to
resolve by observing the distribution of the initial positions and how they displaced. As a possible
solution, we could have tried to implement a seed in which a working set of initial positions would be set
every single run. However, it didn’t really seem random and not a permanent solution if we wanted to see
all possible behaviors of the molecular dynamics. (2) The other issue was the instability of our system after
a long period of time. It seemed that the force of the atoms grew exponentially which caused the
acceleration of the atoms to grow exponentially as well. As it was commented in our matlab script,
dynamics.m, as a possible remedy, we chose to make the force between atoms constant if they were within a
certain distance of each other. The reasoning behind this was that by observing the force equation

fi =245 - %)

ij rij

when the distance 7;; is about 1, we find that this force becomes equal to 24. As this distance gets smaller
and smaller, the force would grow very large leading to the system blowing up. Due to the fact that we



could not fully enforce the criteria where the atoms needed to be at least o from each other, this was one of
our solutions. By using a multiple of 24 as a constant and dividing this number by the small distance

rij < 1.1, we were able to obtain a smaller system which delayed the eventual blow up. This value was
taken from the reading in "Computational Physics” by Giordano and Nakanishi. Figure 6 below are some
screenshots taken at different times as an attempt to show our simulation.
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Figure 6: This is a demo displaying screenshots taken from our simulation in increments of ¢t = 2. The
panels go from left to right, for each row.



%verlet algorithm to solve system
for t = l:tmax

% find distances for all atoms and their forces
for i = 1:N
for j = 1:iN
r(i,j) = (sqrt((p(j)-p(i))"2 + (p(j+N)-p(i+N))~2));

if i ~= 3 & r(i,j) < 3.0 && r(i,j) > 1.1
f(i,j) = abs(24x((2/(r(1,j)~13))=(1/r(4,j)~7)));

% To strengthen distance criteria of less than 1; explained in write up. (2)
elseif i ~=j && r(i,j) > 0.0 && r(i,j) <= 1.1
f(i,j) = (168)/r(i,j); %168 is 24x7
else
f(1,3) = 0;
end
end
end

%% find acceleration of both components
% for loop to find the forcexcos(...), and forcexsin(...)

for i = 1:N
for j = 1:N
dx = (p(j)-p(i)); % distance between x components
dy = (p(j+N)-p(i+N)); % distance between y components
if jo~=d
sx(i,j) = f(i,j)*(dx/(r(i,j)));
sy(i,j) = f(i,j)*(dy/(r(i,3)));
else
sx(1,j) = 0;
sy(i,j) = 0;
end
end
end

% Acceleration is the sum of what was found in for loop above
ax = sum(sx);
ay = sum(sy);

nn

% Enforcing boundary conditions
for i = 1:N
for j = 1:2
if (pn(i,j) > L);
pn(i,j) = pn(i,j) - 2%L;

v

end
if (pn(i,j) < 0.0);
pn(i,j) = pn(i,j) + 2%L;
end
end
end

% Update velocity vector
v(1:N) = abs(pn(1:N)-p1(1:N)/(2%dt));
V(N+1:24N) = abs(pn(N+1:2xN)-pl(N+1:2N)/(2xdt));

%% Update old position vectors
% Position vector at t-1
p1(1:N) = p(1:N);

PL(N+1:2%N) = p(N+1:2xN);

% position vector at t
p(1:N) = pn(1:N);
p(N+1:2%N) = pn(N+1:2*N);

%% Calculating the temperature of the system given the equipartition theorem.
% molecular mass of argon: 39.948 g/mol, convert to kg.

B = 1.38%10”-23; % Boltzmann Constant

T= (((9.96e-25)/2)*mean(v(1:N).~2+v(N+1:2%N).~2))/(B);

% Simulation
plot(p(1:N),p(N+1:Nx2), 'ro');
grid;

axis([0 2«L 0 2xL]);

axis square;

pause(0.1);

end

Figure 7: This is taken from our Matlab script, dynamic.m which shows our implementation for Verlet’s
Algorithm, as well as the calculation for the temperature and show we generated our simulation.



